Valence Technology

Phosphates for Lithium-ion Batteries: Materials, Synthesis and **Future Opportunities**

Valence Technology Inc.

Jerry Barker Consultants

Specialists in Electrochemical and Solid-State Chemistry

www.jerrybarker.co.uk

Overview of Presentation Technology Introduction Carbothermal Reduction Why Phosphates? Olivines Nasicons Fluorophosphates, LiVPO₄F and Na₂V₂(PO₄)₂F₂ New Opportunities, New Cell Structures Conclusions

Introduction

- Valence Technology has been working on Phosphate Active Materials since the early 1990's.
- Has built up a large portfolio of lithium and sodium active materials phosphates, condensed phosphates, fluorophosphates and other polyanions (100+ patents on active materials)
- Valence needed a cost effective and scalable process for making these active materials at a commercial scale. Developed the Carbothermal Reduction (CTR) Method.
- Today, Valence makes active materials using the CTR approach up to Metric Tonne/day scale.

Valence

Carbothermal Reduction

- The Carbothermal Reduction (CTR) method utilizes a high surface area carbon as a selective reducing agent
- 2C + O₂ -> 2 CO = increase in volume and therefore entropy. Carbon is unique in that CO free energy of formation becomes increasingly negative as the temperature increases i.e. more stable at high temperatures. Implications: Carbon can reduce any oxide provided a high enough temperature can be reached. Example: Na extraction:

Na₂CO₃ (liquid) + 2 C (solid) → 2 Na (vapor) + 3 CO (gas)

- By design, the CTR technique leaves behind an embedded conductive network.
- Carbon monoxide formed during the synthesis both promotes further reduction and deposits carbon "nanoparticles"
- Net result: precursor carbon is finely distributed throughout and on surface of final product.

Valence Technology			Valence Studied Phosphates		
Material	Nominal Voltage vs. Li	Specific Capacity mAh/g	Inventor	US Patent#	Comments
LiFePO ₄	3.45	140-160	J. Goodenough	US 5910382 and others	Olivine
LiFe _{1-x} M _x PO ₄	3.45	140-160	J.Barker et al	US 6884544 and others	M = Mg, Ca, Zn
Li ₃ V ₂ (PO ₄) ₃	3.6-4.7	197	J.Barker et al	US 5871866 and others	Nasicon
LiVPO ₄ F	4.2	155	J.Barker et al	US 6387568 and others	Triclinic
LiVPO ₄ .OH	4.1	158	J.Barker et al	US 6777132 and others	Triclinic
LiVP ₂ O ₇	4.1	116			Diphosphate
Li ₂ MPO ₄ F	4.7	143	J.Barker et al	US 6964827 and others	M = Co, Ni etc.
Na ₂ MPO ₄ F	4.7	122	J.Barker et al	US 6872492 and others	M = Co, Ni etc.
Li ₄ V ₂ (SiO ₄)(PO ₄) ₂	3.6-4.7	260	J.Barker et al	US 6136472 and others	Silicophosphate
Li ₃ V _{1.5} Al _{0.5} (PO ₄) ₃	3.6-4.7	203	J.Barker et al	US 5871866 and others	Nasicon
β-LiVOPO ₄	4.0	159	J.Barker et al	US 6645452 (CTR)	Prepared by CTR
NaVPO ₄ F	3.7	143	J.Barker et al	US 6872492 and others	Sodium Ion
Na ₃ V ₂ (PO ₄) ₂ F ₃	3.7	192	J.Barker et al	US 6872492 and others	Sodium Ion
Novel Phase A	3.8	<i>ca.</i> 150	J.Barker et al	Pending	Application Pending
Novel Phase B	3.9	<i>ca.</i> 140	J.Barker et al	Pending	Application Pending
Novel Phase C	3.5	<i>ca.</i> 145	J.Barker et al	Pending	Application Pending

ilename	Temp(°C)	LiH ₂ PO ₄ %	Fe ₂ O ₃ %	Li ₃ Fe ₂ (PO ₄) ₃ %	LiFePO ₄ %	Li ₄ P ₂ O ₇ %	LiFeP ₂ O ₇ %	FePO ₄ %	Fe ₂ P ₂ O ₇ %
S3245	300	2.92	76.15	0.40	0.38	0.74	18.59	0	0
3245_1	400	0	43.74	3.06	1.24	0	51.959	0	0
3245_2	500	0	30.54	34.62	4.92	0	29.92	0	0
3245_3	600	0	3.32	1.50	91.65	0	0.84	0.46	2.24
3245_4	700	0	0.18	0.96	97.84	0	0.33	0.33	0.36
3245_5	800	0	0	1.16	96.89	0	0.84	0.32	0.79
3245_6	900	0	0	1.32	96.73	0	0.73	0.53	0.69

LiVPO₄F

Valence Lithium-ion: LiFePO ₄ vs. LiVPO ₄ F			
	LIFeP0 ₄	LIVP04F	
Safety	Excellent	Excellent	
Cycle Life	Excellent	Good	
Cost (CTR)	Good	Good	
Energy Density	Moderate	Excellent	
Power	Excellent	Excellent	
Large Format	Yes	Yes	
Float	Excellent	Good	
Temp. Performance	Excellent	Excellent	
		33	

Valence Technology	Alternate Cell Configurations		
	LITHIUM-ION		
G	Graphite / Li electrolyte / Li cathode		
	SYMMETRICAL LITHIUM-ION		
LiVPO ₄ F / Li electrolyte / LiVPO ₄ F			
	SODIUM-ION		
Hard	I Carbon / Na electrolyte / Na cathode		
	HYBRID-ION		
G	raphite / Li electrolyte / Na Cathode		

39

Symmetrical Lithium-ion Cells

- Concept: Use the same active material as both anode and cathode for example: LiVPO_4F
- Single Electrode Coating gives simplicity of manufacture, cost and use (single electrode coating)
- Intrinsically safe: a 'bullet-proof 'technology
- Ideally suited for large format applications
- Moderate Energy Density but High Rate
- · Bi-polar: Charge in either direction
- Improvement over Li₄Ti₅O₁₂ Anode Technology

Sodium-ion Cells

- · Sodium-ion: A viable alternative to lithium-ion technology
- Non-graphitic Negative Electrode Material (typically Hard Carbon)
- · Energy Density should be similar to lithium-ion
- · Possibility of Inexpensive Active Materials
- The field is relatively un-chartered
- Safer Technology?

Hybrid-ion Cells

- Concept: Use Sodium based positive electrodes with Li insertion negatives electrodes - for example: Graphite//Na₃V₂(PO₄)₂F₃
- All the Li for the negative electrode reaction originates from the electrolyte
- · An enabling technology many new cell chemistries
- · Key Feature: Fully lithiated graphite is stable in a Na* electrolyte
- Negative Electrode Reaction: Reversible Li* insertion
- Positive Electrode Reaction: Reversible Na⁺ insertion (initially)

Hybrid-ion Cell: Graphite/Li⁺/Na₃V₂(PO₄)₂F₃

Valence Technology

Hybrid-ion Cell: Graphite/Li*/Na₃V₂(PO₄)₂F₃

Valence Technology Hybrid-ion Cell: Li₄Ti₅O₁₂/Li⁺/Na₃V₂(PO₄)₂F₃

Valence Technology Hybr

Hybrid-ion Cell: Li₄Ti₅O₁₂/Li⁺/Na₃V₂(PO₄)₂F₃

<page-header>

	Valence
V	Technoloav

Conclusions

- Both sloping and flat discharge profiles are possible depending on the metal combinations and structure.
- · Carbothermal Reduction low cost processing, scalable
- General attributes include: exceptional life cycling, good rate performance, outstanding safety characteristics.
- Phosphate materials are particularly suitable for large format applications EV/HEV etc
- Applicability into new battery configurations: sodium-ion, hybridion, symmetrical lithium-ion etc.
- There are still many new active phases to discover just do not look in the normal places!!

